[Algorithmic Simplicity] Why Does Diffusion Work Better than Auto-Regression?
🎯 Загружено автоматически через бота:
🚫 Оригинал видео:
📺 Данное видео принадлежит каналу «Algorithmic Simplicity» (@algorithmicsimplicity). Оно представлено в нашем сообществе исключительно в информационных, научных, образовательных или культурных целях. Наше сообщество не утверждает никаких прав на данное видео. Пожалуйста, поддержите автора, посетив его оригинальный канал.
✉️ Если у вас есть претензии к авторским правам на данное видео, пожалуйста, свяжитесь с нами по почте support@, и мы немедленно удалим его.
📃 Оригинальное описание:
Have you ever wondered how generative AI actually works? Well the short answer is, in exactly the same as way as regular AI!
In this video I break down the state of the art in generative AI - Auto-regressors and Denoising Diffusion models - and explain how this seemingly magical technology is all the result of curve fitting, like the rest of machine learning.
Come learn the differences (and similarities!) between auto-regression and diffusion, why these methods are needed to perform generation of complex natural data, and why diffusion models work better for image generation but are not used for text generation.
The following generative models were featured as demos in this video:
Images: Adobe Firefly ()
Text: ChatGPT ()
Audio: ()
Code: Gemini ()
Video: Lumiere ()
Chapters:
Intro to Generative AI
Why Naïve Generation Doesn’t Work
Auto-regression
Generalized Auto-regression
Denoising Diffusion
Optimizations
Re-using Models and Causal Architectures
Diffusion Models Predict the Noise Instead of the Image
Conditional Generation
Classifier-free Guidance
1 view
0
0
3 weeks ago 00:04:07 9
NeilPryde Windsurfing 2013 Sail Collection
2 months ago 00:10:57 1
Crypto Mining | Crypto Mining Passive Income | Tips to Crypto Mining 🔥 BlockDAG Keynote 2