1. The spelled-out intro to neural networks and backpropagation: building micrograd
The Tokenizer is a necessary and pervasive component of Large Language Models (LLMs), where it translates between strings and tokens (text chunks). Tokenizers are a completely separate stage of the LLM pipeline: they have their own training sets, training algorithms (Byte Pair Encoding), and after training implement two fundamental functions: encode() from strings to tokens, and decode() back from tokens to strings. In this lecture we build from scratch the Tokenizer used in the GPT series from OpenAI. In the process, we will see that a lot of weird behaviors and problems of LLMs actually trace back to tokenization. We’ll go through a number of these issues, discuss why tokenization is at fault, and why someone out there ideally finds a way to delete this stage entirely.
Chapters:
00:00:00 intro: Tokenization, GPT-2 paper, tokenization-related issues
00:05:50 tokenization by example in a Web UI (tiktokenizer)
00:14:56 strings in Python, Unicode code points
00:18:15 Unicode byte encodings, ASCII, UTF-8, UTF-16, UTF-32
00:22:47 daydreaming: deleting tokenization
00:23:50 Byte Pair Encoding (BPE) algorithm walkthrough
00:27:02 starting the implementation
00:28:35 counting consecutive pairs, finding most common pair
00:30:36 merging the most common pair
00:34:58 training the tokenizer: adding the while loop, compression ratio
00:39:20 tokenizer/LLM diagram: it is a completely separate stage
00:42:47 decoding tokens to strings
00:48:21 encoding strings to tokens
00:57:36 regex patterns to force splits across categories
01:11:38 tiktoken library intro, differences between GPT-2/GPT-4 regex
01:14:59 GPT-2 released by OpenAI walkthrough
01:18:26 special tokens, tiktoken handling of, GPT-2/GPT-4 differences
01:25:28 minbpe exercise time! write your own GPT-4 tokenizer
01:28:42 sentencepiece library intro, used to train Llama 2 vocabulary
01:43:27 how to set vocabulary set? revisiting transformer
01:48:11 training new tokens, example of prompt compression
01:49:58 multimodal [image, video, audio] tokenization with vector quantization
01:51:41 revisiting and explaining the quirks of LLM tokenization
02:10:20 final recommendations
02:12:50 ??? :)
Exercises:
- Advised flow: reference this document and try to implement the steps before I give away the partial solutions in the video. The full solutions if you’re getting stuck are in the minbpe code
Links:
- Google colab for the video:
- GitHub repo for the video: minBPE
Supplementary links:
- tiktokenizer
- tiktoken from OpenAI:
- sentencepiece from Google
34 views
6986
2625
1 month ago 00:05:27 1
Batman Death Metal
1 month ago 00:02:37 1
Убери жир с рук: 5-минутное упражнение у стены. Чтобы трицепс не висел
1 month ago 00:10:37 1
Обалденное куриное мясо в манке, супер просто.
1 month ago 00:06:38 1
Meme Coin SUPER CYCLE - I Made 1 ETH PER DAY with This Meme Coin Trading Bot
1 month ago 00:01:32 1
Vi & Caitlyn | You and I (+2x09)
1 month ago 02:06:58 5
Why Am I Doing This? (A Film About Touring)
1 month ago 08:40:30 1
ВСЁ ИЛИ НИЧЕГО! Мафия с Левшой. Лига 7+3. Сезон 3. День 1
1 month ago 00:28:58 1
Успейте сделать!❄️3 чудесные ИДЕИ декора на Новый Год🎄Просто, быстро и оригинально!
1 month ago 00:00:00 1
. 2 HEART OF CHERNOBYL➤ИДУ СВОЕЙ ДОРОГОЙ➤СТАЛКЕР 2➤ПРОХОЖДЕНИЕ➤Часть 4🎮
1 month ago 00:00:13 1
Да что ты черт побери такое несешь ? (Банды Нью-Йорка)