Insect Inspired Self-Righting for Fixed-Wing Drones
Micro Aerial Vehicles (MAVs) are being used in a wide range of applications such as surveillance, reconnaissance, inspection, and search and rescue. However, due to their size and mission profiles, they are prone to tipping over, jeopardizing their operation. Self-righting is an open challenge for fixed-wing drones since existing research focuses on terrestrial and multicopter flying robots with solutions that increase drag and structural weight. Until now, solutions for winged drones remained unexplored. Inspired by beetles, we propose a robust and elegant solution where we retrofit a fixed-wing drone with a set of additional wings akin to beetles shell structured wings called elytra. We show that artificial elytra provide additional lift during flight to mitigate their structural weight while also being able to self-right the MAV when it has been flipped over. We performed simulations along with dynamic and aerodynamic experiments to validate our results.
Publication reference:
Insect Inspired Sel
26 views
215
53
8 years ago 00:01:04 247
Insect-Inspired Mechanical Resilience for Multicopters
6 years ago 00:01:34 409
DelFly Nimble - an agile insect-inspired robot
3 years ago 00:01:06 26
Insect Inspired Self-Righting for Fixed-Wing Drones
12 years ago 00:01:51 22
Controlled Flight of a Biologically-Inspired, Insect-Scale Robot