The EASIEST way to finetune LLAMA-v2 on local machine!
In this video, I’ll show you the easiest, simplest and fastest way to fine tune llama-v2 on your local machine for a custom dataset! You can also use the tutorial to train/finetune any other Large Language Model (LLM). In this tutorial, we will be using autotrain-advanced.
AutoTrain Advanced github repo:
Steps:
Install autotrain-advanced using pip:
- pip install autotrain-advanced
Setup (optional, required on google colab):
- autotrain setup --update-torch
Train:
autotrain llm --train --project_name my-llm --model meta-llama/Llama-2-7b-hf --data_path . --use_peft --use_int4 --learning_rate 2e-4 --train_batch_size 12 --num_train_epochs 3 --trainer sft
If you are on free version of colab, use this model instead: This is a smaller sharded version of llama-2-7b-hf by meta.
Please subscribe and like the video to help me keep motivated to make aw