Вариант Основной Волны ЕГЭ 2023 | Математика Профиль | Оформление на 100 Баллов
Привет, меня зовут Евгений, и я готовлю к ЕГЭ и ОГЭ по математике 12 лет. Этот вариант увидели перед собой выпускники в 2023 году. Вариант переделан под формат ЕГЭ 2024 (с учётом изменений в первой части)
👍 ССЫЛКИ:
Скачать вариант:
VK группа:
Видеокурсы:
Как я сдал ЕГЭ:
Отзывы:
Инста:
🔥 ТАЙМКОДЫ:
Начало – 00:00
Задача 1 – 01:11
Площадь параллелограмма ABCD равна 132. Точка G- середина стороны CD. Найдите площадь трапеции ABGD.
Задача 2 – 02:07
Длины векторов a ⃗ и b ⃗ равны 3 и 5, а угол между ними равен 60°. Найдите скалярное произведение a ⃗∙b ⃗.
Задача 3 – 03:13
Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 57.
Задача 4 – 04:24
На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 4 прыгуна из Италии и 6 прыгунов из Мексики. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что двадцать четвёртым будет выступать прыгун из Италии.
Задача 5 – 05:24
Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.
Задача 6 – 08:39
Найдите корень уравнения 7^(-6-x)=343.
Задача 7 – 09:38
Найдите значение выражения log_52/log_513 log_130,5.
Задача 8 – 10:57
На рисунке изображён график y=f^’ (x)- производной функции f(x). На оси абсцисс отмечены шесть точек: x_1, x_2, x_3, x_4, x_5, x_6. Сколько из этих точек лежит на промежутках возрастания функции f(x)?
Задача 9 – 12:20
Перед отправкой тепловоз издал гудок с частотой f_0=192 Гц. Чуть позже гудок издал подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f (в Гц) больше первого: она зависит от скорости тепловоза ν (в м/с) по закону f(ν)=f_0/(1-ν/c) (Гц), где c — скорость звука (в м/с).
Задача 10 – 17:37
Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 180 литров она заполняет на 8 минут дольше, чем вторая труба?
Задача 11 – 22:52
На рисунке изображены графики функций видов f(x)=ax^2 bx c и g(x)=kx, пересекающиеся в точках A и B. Найдите абсциссу точки B.
Задача 12 – 27:44
Найдите наименьшее значение функции y=2/3 x√x-6x-5 на отрезке [9;36].
Задача 13 – 31:25
а) Решите уравнение cosx∙cos2x=√2 sin^2 x cosx.
б) Укажите корни этого уравнения, принадлежащие отрезку [-5π/2;-π].
Разбор ошибок 13 – 43:15
Задача 15 – 51:15
Решите неравенство (log_0,25^2 (x 3)-log_4(x^2 6x 9) 1)∙log_4(x 2)≤0.
Разбор ошибок 15 – 01:03:47
Задача 16 – 01:16:09
В июле 2025 года планируется взять кредит на десять лет в размере 600 тыс. рублей. Условия его возврата таковы:
– каждый январь долг будет возрастать на r% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо оплатить одним платежом часть долга;
– в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года;
– в конце 2030 года долг составит 400 тыс. руб;
– в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года;
– к июлю 2035 года долг должен быть выплачен полностью.
Найдите r, если общая сумма выплат после полного погашения кредита будет равна 1740 тыс. рублей.
Задача 18 – 01:43:42
Найдите все значения a, при каждом из которых система уравнений
{((xy-2x 12)∙√(y-2x 12)=0,
y=ax-10 )┤
имеет ровно два различных решения.
Задача 19 – 02:19:07
Из пары натуральных чисел (a;b), где a b, за один ход получают пару (a b;a-b).
а) Можно ли за несколько таких ходов получить из пары (50;9) пару, большее число в которой равно 200?
б) Можно ли за несколько таких ходов получить из пары (50;9) пару (408;370)?
в) Какое наименьшее a может быть в паре (a;b), из которой за несколько ходов можно получить пару (408;370)?
Задача 17 – 02:38:01
Дан равносторонний треугольник ABC. На стороне AC выбрана точка M, серединный перпендикуляр к отрезку BM пересекает сторону AB в точке E, а сторону BC в точке K.
а) Докажите, что угол AEM равен углу CMK.
б) Найдите отношение площадей треугольников AEM и CMK, если AM:CM=1:4.
Задача 14 – 03:00:17
В основании прямой призмы ABCDA_1 B_1 C_1 D_1 лежит параллелограмм ABCD с углом 60° при вершине A. На рёбрах A_1 B_1, B_1 C_1 и BC отмечены точки M, K и N соответственно так, что четырёхугольник AMKN- равнобедренная трапеция с основаниями 2 и 4.
а) Докажите, что точка M- середина ребра A_1 B_1.
б) Найдите высоту призмы, если её объём равен 16 и известно, что точка K делит ребро B_1 C_1 в отношении B_1 K:KC_1=1:3.
#ВариантыЕГЭпрофильШколаПифагора
72 views
102
37
3 weeks ago 00:00:37 1
Беатрис беспощадна #mlbb #mobilelegends #games
3 weeks ago 00:06:57 6
Суд вынес решение, что у РФ нет документов доказывающих право на землю СССР.