MIT Deep Learning Genomics - Lecture 11 - RNA, PCA, t-SNE, Embeddings (Spring20)
MIT Lecture 11. Spring 2020
Course website:
Lecture slides:
Outline:
1. Gene expression analysis: The Biology of RNA-seq
2. Supervised (Classification) vs. unsupervised (Clustering)
3. Supervised: Differential expression analysis
4. Unsupervised: Embedding into lower dimensional space
5. Linear reduction of dimensionality
- Principle Component Analysis
- Singular Value Decomposition
6. Non-linear dimensionality reduction: embeddings
- t-distributed Stochastic Network Embe