Задание 14 (из 278 варианта Ларина)

В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 4. Точки M и N – середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C. б) Найдите периметр многоугольника, являющегося сечением пирамиды SABC плоскостью α.
Back to Top