coursera-advanced-learning-algorithms-2022-6
1_neural-networks\
1_neural-networks-intuition\
0:00 1_welcome
2:53 2_neurons-and-the-brain
13:45 3_demand-prediction
30:08 4_example-recognizing-images
2_neural-network-model\
36:43 1_neural-network-layer
46:32 2_more-complex-neural-networks
53:51 3_inference-making-predictions-forward-propagation
3_tensorflow-implementation\
59:14 1_inference-in-code
1:06:26 2_data-in-tensorflow
1:17:45 3_building-a-neural-network
4_neural-network-implementation-in-python\
1:26:06 1_forward-prop-in-a-single-layer
1:31:13 2_general-implementation-of-forward-propagation
5_speculations-on-artificial-general-intelligence-agi\
1:39:05 1_is-there-a-path-to-agi
6_vectorization-optional\
1:49:39 1_how-neural-networks-are-implemented-efficiently
1:54:02 2_matrix-multiplication
2:03:29 3_matrix-multiplication-rules
2:13:02 4_matrix-multiplication-code
2_neural-network-training\
1_neural-network-training\
2:19:43 1_tensorflow-implementation
2:23:20 2_training-details
2_activation-functions\
2:37:00 1_alternatives-to-the-sigmoid-activation
2:42:30 2_choosing-activation-functions
2:50:54 3_why-do-we-need-activation-functions
3_multiclass-classification\
2:56:25 1_multiclass
2:59:53 2_softmax
3:11:26 3_neural-network-with-softmax-output
3:18:50 4_improved-implementation-of-softmax
3:28:02 5_classification-with-multiple-outputs-optional
4_additional-neural-network-concepts\
3:32:22 1_advanced-optimization
3:38:48 2_additional-layer-types
3_advice-for-applying-machine-learning\
1_advice-for-applying-machine-learning\
3:47:43 1_deciding-what-to-try-next
3:51:24 2_evaluating-a-model
4:01:50 3_model-selection-and-training-cross-validation-test-sets
2_bias-and-variance\
4:16:42 1_diagnosing-bias-and-variance
4:27:55 2_regularization-and-bias-variance
4:38:31 3_establishing-a-baseline-level-of-performance
4:47:57 4_learning-curves
5:00:10 5_deciding-what-to-try-next-revisited
5:08:57 6_bias-variance-and-neural-networks
3_machine-learning-development-process\
5:19:41 1_iterative-loop-of-ml-development
5:27:23 2_error-analysis
5:35:44 3_adding-data
5:50:07 4_transfer-learning-using-data-from-a-different-task
6:02:17 5_full-cycle-of-a-machine-learning-project
6:11:02 6_fairness-bias-and-ethics
4_skewed-datasets-optional\
6:20:58 1_error-metrics-for-skewed-datasets
6:32:33 2_trading-off-precision-and-recall
4_decision-trees\
1_decision-trees\
6:44:22 1_decision-tree-model
6:51:27 2_learning-process
2_decision-tree-learning\
7:02:47 1_measuring-purity
7:10:37 2_choosing-a-split-information-gain
7:22:29 3_putting-it-together
7:31:57 4_using-one-hot-encoding-of-categorical-features
7:37:22 5_continuous-valued-features
7:44:16 6_regression-trees-optional
3_tree-ensembles\
7:54:07 1_using-multiple-decision-trees
7:58:03 2_sampling-with-replacement
8:02:02 3_random-forest-algorithm
8:08:25 4_xgboost
8:15:50 5_when-to-use-decision-trees