Complete, Incomplete Dominance and Codominance - difference explained

Complete dominance Complete dominance occurs when the phenotype of the heterozygote is completely indistinguishable from that of the dominant homozygote. Incomplete and semi-dominance Incomplete dominance (also called partial dominance) occurs when the phenotype of the heterozygous genotype is distinct from and often intermediate to the phenotypes of the homozygous genotypes. For example, the snapdragon flower color is either homozygous for red or white. When the red homozygous flower is paired with the white homozygous flower, the result yields a pink snapdragon flower. The pink snapdragon is the result of incomplete dominance. A similar type of incomplete dominance is found in the four o’clock plant wherein pink color is produced when true-bred parents of white and red flowers are crossed. In quantitative genetics, where phenotypes are measured and treated numerically, if a heterozygote’s phenotype is exactly between (numerically) that of the two homozygotes, the phenotype is said to exhibit no dominance at all, i.e. dominance exists only when the heterozygote’s phenotype measure lies closer to one homozygote than the other. When plants of the F1 generation are self-pollinated, the phenotypic and genotypic ratio of the F2 generation will be 1:2:1 (Red:Pink:White) for both generations. Co-dominance occurs when the contributions of both alleles are visible in the phenotype. To indicate that two alleles are co-dominant (and that neither is dominant over the other), they are both written in upper-case, with a superscript to indicate the different alleles. For example, in the ABO blood group system, chemical modifications to a glycoprotein (the H antigen) on the surfaces of blood cells are controlled by three alleles, two which are co-dominant to each other (IA, IB) and dominant over the recessive i at the ABO locus. The IA and IB alleles produce different modifications. The enzyme coded for by IA adds an N-acetylgalactosamine to the membrane-bound H antigen. The IB enzyme adds a galactose. The i allele produces no modification. Thus IA and IB alleles are each dominant to i (IAIA and IAi individuals both have type A blood, and IBIB and IBi individuals both have type B blood. But IAIB individuals have both modifications on their blood cells and thus have type AB blood, so the IA and IB alleles are said to be co-dominant.) Another example occurs at the locus for the Beta-globin component of hemoglobin, where the three molecular phenotypes of HbA/HbA, HbA/HbS, and HbS/HbS are all distinguishable by protein electrophoresis. (The medical condition produced by the heterozygous genotype is called sickle-cell trait and is a milder condition distinguishable from sickle-cell anemia, thus the alleles show incomplete dominance with respect to anemia, see above). For most gene loci at the molecular level, both alleles are expressed co-dominantly, because both are transcribed into RNA. Co-dominance, where allelic products co-exist in the phenotype, is different from incomplete or semi-dominance, where the quantitative interaction of allele products produces an intermediate phenotype. For example in Co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots. When plants of the F1 generation are self-pollinated, the phenotypic and genotypic ratio of the F2 generation will be 1:2:1 (Red:Spotted:White). These ratios are the same as those for incomplete dominance. Again, note that this classical terminology is inappropriate - in reality such cases should not be said to exhibit dominance at all. #gene #Cancer #geneticCode #proteins #Genetics101 #geneExpression #phenotype #explainEverything #everything #GeneticsExamQuestionsSolutions #GeneticTesting #genetics #genotype #DNA #ExplainEverything #explain #genes #ipad #chromosome #GeneticsLecture #alleles #GeneticExamQuestionsSolutions #molecularBiology #codominant #Heterozygous #F1Generation #selfpollinated #incompleteDominance #semidominance #punnettSquares #codominance #epistasis #polygenic #flower
Back to Top