Lecture 3 continues our discussion of linear classifiers. We introduce the idea of a loss function to quantify our unhappiness with a model’s predictions, and discuss two commonly used loss functions for image classification: the multiclass SVM loss and the multinomial logistic regression loss. We introduce the idea of regularization as a mechanism to fight overfitting, with weight decay as a concrete example. We introduce the idea of optimization and the stochastic gradient descent algorithm. We also briefly discuss the use of feature representations in computer vision.
71 view
46
2
2 months ago 00:59:09 1
Самый могущественный тайный орден. От убийства царя до завоевания космоса | ФАЙБ
2 months ago 00:00:33 2
Promo - Monk’s Life E01- S03 - CYC
2 months ago 01:13:53 1
АУМ СИНРИКЁ. Самая страшная секта XX века | ФАЙБ
2 months ago 00:12:28 2
Fr. Lazarus El Anthony -The Visit of St. Mary- Monk’s Life S03 E01- CYC
2 months ago 00:00:45 2
Promo - Monk’s Life S03 E03 - CYC
2 months ago 00:00:53 2
Promo- Monk’s life S03 E02 - CYC
2 months ago 00:00:36 2
Promo - Monk’s Life S03 E04 - CYC
2 months ago 00:00:44 2
Promo - Monk’s Life S03 E05 - CYC
2 months ago 00:00:51 2
Promo - Monk’s Life S03 E06 - CYC
2 months ago 00:44:31 1
class 3 interproximal contacts, composite Restoration