Гриневич П.Г. - Конформная геометрия и Римановы поверхности - 5. Weyl and Cotton tensors

00:15 Introduction and definition of the tensor 03:01 Invariance of the Weyl’s tensor 06:24 Proof of formulas 12:54 Proof of the lemma 34:44 Checking the conditions 01:12:36 Representation of the Riemann sphere sn and the Mobius group. Description of a light cone in sn space. 01:17:07 Tangent vectors and scalar product 01:26:01 Conformal class of the residual metric. Using a cone as a sphere model and determining the conformal multiplier. 01:32:07 Subgroup and conformal transformation 01:36:05 Mobius Group. Connection with the Lorentz group. Pseudo-Euclidean groups and conformal maps. Ссылка на плейлист YT: Ссылка на плейлист VK: #мгу #мехмат #геометрия #римановыповерхности #гриневич
Back to Top