Вариант #14 из задач ФИПИ - Уровень Сложности ЕГЭ 2024| Математика Профиль| Оформление на 100 Баллов
Привет, меня зовут Евгений, и я готовлю к ЕГЭ и ОГЭ по математике 12 лет. В этом видео разберём вариант ЕГЭ 2024 на 100 баллов. Вариант составлен из задач, которые когда-то уже выпадали на ЕГЭ и из ФИПИ, поэтому варианты получаются уровня сложности реального ЕГЭ
👍 ССЫЛКИ:
Скачать вариант:
VK группа:
Видеокурсы:
Как я сдал ЕГЭ:
Отзывы:
Инста:
🔥 ТАЙМКОДЫ:
Начало – 00:00
Задача 1 – 01:39
Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Боковая сторона треугольника равна 11. Найдите площадь этого треугольника.
Задача 2 – 03:17
Даны векторы a ⃗ (2;-5) и b ⃗ (5;7). Найдите скалярное произведение векторов 0,6a ⃗ и 1,4b ⃗.
Задача 3 – 04:52
Найдите объём многогранника, вершинами которого являются вершины A_1, B_1, F_1, A правильной шестиугольной призмы ABCDEFA_1 B_1 C_1 D_1 E_1 F_1, площадь основания которой равна 12, а боковое ребро равно 15.
Задача 4 – 07:27
Вероятность того, что на тестировании по математике учащийся А. верно решит больше 9 задач, равна 0,63. Вероятность того, что А. верно решит больше 8 задач, равна 0,75. Найдите вероятность того, что А. верно решит ровно 9 задач.
Задача 5 – 10:05
В городе 46% взрослого населения – мужчины. Пенсионеры составляют 7,7% взрослого населения, причём доля пенсионеров среди женщин равна 10%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Задача 6 – 14:49
Найдите корень уравнения (1/2)^(x-6)=8^x.
Задача 7 – 17:48
Найдите значение выражения log_52/log_513 log_130,5.
Задача 8 – 19:55
На рисунке изображён график функции y=f(x), определённой на интервале (-4;13). Определите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=14.
Задача 9 – 22:59
Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой η=(T_1-T_2)/T_1 ∙100%, где T_1 — температура нагревателя (в кельвинах), T_2 — температура холодильника (в кельвинах). При какой температуре нагревателя T_1 КПД этого двигателя будет 25%, если температура холодильника T_2=276 К? Ответ дайте в градусах Кельвина.
Задача 10 – 25:07
Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 180 литров она заполняет на 8 минут дольше, чем вторая труба?
Задача 11 – 32:14
На рисунке изображён график функции вида f(x)=ax^2 bx c. Найдите значение f(-3).
Задача 12 – 37:03
Найдите точку максимума функции y=(x-5)^2∙e^(x-7).
Задача 13 – 41:35
а) Решите уравнение 2√2 sin(x π/3) 2cos^2 x=2 √6 cosx.
б) Укажите корни этого уравнения, принадлежащие отрезку [-3π;-3π/2].
Разбор ошибок 13 – 53:15
Задача 15 – 58:41
Решите неравенство (log_6(36x)-1)/(log_6^2 x-log_6〖x^3 〗 )≥0.
Разбор ошибок 15 – 01:06:40
Задача 16 – 01:16:19
Матвей хочет взять в кредит 1,4 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет Матвей может взять кредит, чтобы ежегодные выплаты были не более 320 тысяч рублей?
Задача 18 – 01:30:09
Найдите все значения a, при каждом из которых уравнение (tgx 6)^2-(a^2 2a 8)(tgx 6) a^2 (2a 8)=0 имеет на отрезке [0;3π/2] ровно два решения.
Задача 17 – 01:43:19
Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.
а) Докажите, что прямые MN и BO параллельны.
б) Найдите площадь четырёхугольника BOMN, если CN=4 и
AM:MC=1:3.
Задача 14 – 02:00:57
На ребре AA_1 прямоугольного параллелепипеда ABCDA_1 B_1 C_1 D_1 взята точка E так, что A_1 E:EA=1:2, на ребре BB_1- точка F так, что B_1 F:FB=1:5, а точка T- середина ребра B_1 C_1. Известно, что AB=2, AD=6, AA_1=6.
а) Докажите, что плоскость EFT проходит через вершину D_1.
б) Найдите угол между плоскостью EFT и плоскостью AA_1 B_1.
Задача 19 – 02:20:12
Целое число S является суммой не менее трёх последовательных членов непостоянной арифметической прогрессии, состоящей из целых чисел.
а) Может ли S равняться 8?
б) Может ли S равняться 1?
в) Найдите все значения, которые может принимать S.
#ВариантыЕГЭпрофильШколаПифагора
1 view
31
7
3 weeks ago 00:45:21 1
Зеленая крыша: сколько стоит и как её сделать?
3 weeks ago 00:19:18 2
На аукционе продали белый холст за 1,4 млн долларов (Новости Будущего)
3 weeks ago 00:25:40 305
Плоская крыша на проекте Zrobim. Как сделать надежную плоскую кровлю на 30 лет: полная инструкция