FNet: Mixing Tokens with Fourier Transforms (Machine Learning Research Paper Explained)

#fnet #attention #fourier Do we even need Attention? FNets completely drop the Attention mechanism in favor of a simple Fourier transform. They perform almost as well as Transformers, while drastically reducing parameter count, as well as compute and memory requirements. This highlights that a good token mixing heuristic could be as valuable as a learned attention matrix. OUTLINE: 0:00 - Intro & Overview 0:45 - Giving up on Attention 5:00 - FNet Architecture 9:00 - Going deeper into the Fourier Transform 11:20 - The Importance of Mixing 22:20 - Experimental Results 33:00 - Conclusions & Comments Paper: ADDENDUM: Of course, I completely forgot to discuss the connection between Fourier transforms and Convolutions, and that this might be interpreted as convolutions with very large kernels. Abstract: We show that Transformer encoder architectures can be massively sped up, with limited accuracy costs, by replacing the self-attention sublayers with simple linear transformations
Back to Top