Handling imbalanced dataset in machine learning | Deep Learning Tutorial 21 (Tensorflow2.0 & Python)
Credit card fraud detection, cancer prediction, customer churn prediction are some of the examples where you might get an imbalanced dataset. Training a model on imbalanced dataset requires making certain adjustments otherwise the model will not perform as per your expectations. In this video I am discussing various techniques to handle imbalanced dataset in machine learning. I also have a python code that demonstrates these different techniques. In the end there is an exercise for you to solve along with a solution link.
Code:
Path for csv file:
Exercise:
Focal loss article:
27 views
12
7
7 months ago 00:43:37 1
Power Blade 2 (NES) Playthrough - NintendoComplete
3 years ago 00:38:26 27
Handling imbalanced dataset in machine learning | Deep Learning Tutorial 21 (Tensorflow2.0 & Python)