Two important text vectorization algorithms in natural language processing (NLP) are term frequency * inverse document frequency (tf-idf) and Word2Vec / Doc2Vec. Tf-Idf works best for smaller and more focused corpora, whereas Doc2Vec is preferred when dealing with massive corpora that span many topics.
1 view
1252
364
5 months ago 00:13:32 3
Собеседование Data Scientist на Госуслуги. Пора менять профессию))
9 months ago 00:27:16 1
Как обеспечить прозрачность “черного ящика“?
10 months ago 00:30:12 4
Как построить и внедрить NLP модель
3 years ago 00:08:22 1
Calculate TF-IDF in NLP (Simple Example)
3 years ago 00:08:21 1
TF-IDF for Machine Learning
3 years ago 00:09:29 1
NLP: Tf-Idf vs Doc2Vec - Contrast and Compare
3 years ago 00:29:24 1
3 Vector-based Methods for Similarity Search (TF-IDF, BM25, SBERT)
3 years ago 00:58:07 18
Сергей Колесников – о карьерном пути и Data Science в Тинькофф
4 years ago 00:36:37 93
Firing a cannon at sparrows: BERT vs. logreg
4 years ago 00:22:39 5
NLP: Решение задачи классификации твитов, векторные представления текстов - «Школа Больших Данных»