Creating Machine Learning Models\
16:30 NEW Choosing The Right Model For Your Data 2 (Regression)
27:51 Quick Tip How ML Algorithms Work
29:17 Choosing The Right Model For Your Data 3 (Classification)
42:02 Fitting A Model To The Data
48:48 Making Predictions With Our Model
57:13 predict() vs predict_proba()
1:05:46 NEW Making Predictions With Our Model (Regression)
1:14:34 NEW Evaluating A Machine Learning Model (Score) Part 1
1:24:15 NEW Evaluating A Machine Learning Model (Score) Part 2
1:31:03 Evaluating A Machine Learning Model 2 (Cross Validation)
1:44:19 Evaluating A Classification Model 1 (Accuracy)
1:49:05 Evaluating A Classification Model 2 (ROC Curve)
1:58:10 Evaluating A Classification Model 3 (ROC Curve)
2:05:55 Evaluating A Classification Model 4 (Confusion Matrix)
2:16:56 NEW Evaluating A Classification Model 5 (Confusion Matrix)
2:31:19 Evaluating A Classification Model 6 (Classification Report)
2:41:36 NEW Evaluating A Regression Model 1 (R2 Score)
2:51:35 NEW Evaluating A Regression Model 2 (MAE)
2:58:58 NEW Evaluating A Regression Model 3 (MSE)
3:08:47 NEW Evaluating A Model With Cross Validation and Scoring Parameter
3:34:06 NEW Evaluating A Model With Scikit-learn Functions
3:48:08 Improving A Machine Learning Model
3:59:25 Tuning Hyperparameters
4:22:41 Tuning Hyperparameters 2
4:37:04 Tuning Hyperparameters 3
4:52:04 Quick Tip Correlation Analysis
4:54:32 Saving And Loading A Model
5:02:01 Saving And Loading A Model 2
5:08:21 Putting It All Together
5:28:41 Putting It All Together 2
Project 1 Supervised Learning (Classification)\
5:40:15 Section Overview
5:42:25 Project Overview
5:48:34 Project Environment Setup
5:59:34 Optional Windows Project Environment Setup
6:04:26 Step 1~4 Framework Setup
6:16:32 Getting Our Tools Ready
6:25:37 Exploring Our Data
6:34:10 Finding Patterns
6:44:13 Finding Patterns 2
7:01:01 Finding Patterns 3
7:14:38 Preparing Our Data For Machine Learning
7:23:30 Choosing The Right Models
7:33:45 Experimenting With Machine Learning Models
7:40:17 TuningImproving Our Model
7:54:06 Tuning Hyperparameters
8:05:34 Tuning Hyperparameters 2
8:17:24 Tuning Hyperparameters 3
8:24:31 Evaluating Our Model
8:35:31 Evaluating Our Model 2
8:41:26 Evaluating Our Model 3
8:50:16 Finding The Most Important Features
9:06:23 Reviewing The Project
Project 2 Supervised Learning (Time Series Data)\
9:15:37 Section Overview
9:16:44 Project Overview
9:21:09 Project Environment Setup
9:32:01 Step 1~4 Framework Setup
9:40:38 Exploring Our Data
9:54:54 Exploring Our Data 2
10:01:11 Feature Engineering
10:16:36 Turning Data Into Numbers
10:32:14 Filling Missing Numerical Values
10:45:03 Filling Missing Categorical Values
10:53:31 Fitting A Machine Learning Model
11:00:47 Splitting Data
11:10:48 Custom Evaluation Function
11:22:01 Reducing Data
11:32:38 RandomizedSearchCV
11:42:10 Improving Hyperparameters
11:50:21 Preproccessing Our Data